TCRBuilder2+ is a deep learning model for rapid prediction of paired T-cell receptor (TCR) variable domain structures from alpha (A) and beta (B) chain amino acid sequences. It predicts backbone conformations with CDR loop RMSDs on benchmark sets typically around 1–3 Å and produces refined, stereochemically consistent 3D models in PDB format. The API supports batched inference (up to 8 TCRs, sequence length ≤2048) for applications in therapeutic TCR discovery, immune repertoire structural profiling, and structure-guided TCR–pMHC interaction analysis.

Predict

Predict the structure of T-cell receptors using paired alpha (A) and beta (B) chain sequences.

python
from biolmai import BioLM
response = BioLM(
    entity="tcrbuilder2-plus",
    action="predict",
    params={},
    items=[
      {
        "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
        "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
      },
      {
        "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
        "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
      }
    ]
)
print(response)
bash
curl -X POST https://biolm.ai/api/v3/tcrbuilder2-plus/predict/ \
  -H "Authorization: Token YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
  "items": [
    {
      "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    },
    {
      "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    }
  ],
  "params": {}
}'
python
import requests

url = "https://biolm.ai/api/v3/tcrbuilder2-plus/predict/"
headers = {
    "Authorization": "Token YOUR_API_KEY",
    "Content-Type": "application/json"
}
payload = {
      "items": [
        {
          "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
          "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
        },
        {
          "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
          "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
        }
      ],
      "params": {}
    }

response = requests.post(url, headers=headers, json=payload)
print(response.json())
r
library(httr)

url <- "https://biolm.ai/api/v3/tcrbuilder2-plus/predict/"
headers <- c("Authorization" = "Token YOUR_API_KEY", "Content-Type" = "application/json")
body <- list(
  items = list(
    list(
      A = "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      B = "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    ),
    list(
      A = "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      B = "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    )
  ),
  params = list()
)

res <- POST(url, add_headers(.headers = headers), body = body, encode = "json")
print(content(res))
POST /api/v3/tcrbuilder2-plus/predict/

Predict endpoint for TCRBuilder2+.

Request Headers:

Request

  • params (object, optional) — Configuration parameters:

    • include (array of strings, default: [“mean”]) — Output types to include:

      • Allowed values: “mean”, “per_token”, “bos”, “contacts”, “logits”, “attentions”

  • items (array of objects, min: 1, max: 8) — Input sequences:

    • H (string, optional, min length: 1, max length: 2048) — Heavy chain amino acid sequence (required for ABodyBuilder2 and NanoBodyBuilder2)

    • L (string, optional, min length: 1, max length: 2048) — Light chain amino acid sequence (required for ABodyBuilder2)

    • A (string, optional, min length: 1, max length: 2048) — Alpha chain amino acid sequence (required for TCRBuilder2)

    • B (string, optional, min length: 1, max length: 2048) — Beta chain amino acid sequence (required for TCRBuilder2)

  • ImmuneBuilderNanoBodyBuilder2PredictRequest (object) — NanoBodyBuilder2-specific request structure:

    • items (array of objects, min: 1, max: 8) — Input sequences:

      • H (string, required, min length: 1, max length: 2048) — Heavy chain amino acid sequence

  • ImmuneBuilderABodyBuilder2PredictRequest (object) — ABodyBuilder2-specific request structure:

    • items (array of objects, min: 1, max: 8) — Input sequences:

      • H (string, required, min length: 1, max length: 2048) — Heavy chain amino acid sequence

      • L (string, required, min length: 1, max length: 2048) — Light chain amino acid sequence

  • ImmuneBuilderTCRBuilder2PredictRequest (object) — TCRBuilder2-specific request structure:

    • items (array of objects, min: 1, max: 8) — Input sequences:

      • A (string, required, min length: 1, max length: 2048) — Alpha chain amino acid sequence

      • B (string, required, min length: 1, max length: 2048) — Beta chain amino acid sequence

Example request:

http
POST /api/v3/tcrbuilder2-plus/predict/ HTTP/1.1
Host: biolm.ai
Authorization: Token YOUR_API_KEY
Content-Type: application/json

      {
  "items": [
    {
      "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    },
    {
      "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    }
  ],
  "params": {}
}
Status Codes:

Response

  • results (array of objects) — One result per input item, in the order requested:

    • pdb (string) — Predicted immune protein structure in standard PDB format; includes atomic coordinates for all atoms (heavy atoms and hydrogens), residue numbering according to IMGT scheme, and chain identifiers; structure is refined to remove steric clashes, incorrect peptide bond lengths, cis-peptide bonds, and D-amino acids; coordinates are in Angstroms (Å)

Example response:

http
HTTP/1.1 200 OK
Content-Type: application/json

      {
  "results": [
    {
      "pdb": "REMARK  TCR STRUCTURE MODELLED USING TCRBUILDER2+                               \nREMARK  STRUCTURE REFINED USING OPENMM 8.2, 2025-06-19                          \nATOM      1  N   ALA B   2      -9.648... (truncated for documentation)"
    },
    {
      "pdb": "REMARK  TCR STRUCTURE MODELLED USING TCRBUILDER2+                               \nREMARK  STRUCTURE REFINED USING OPENMM 8.2, 2025-06-19                          \nATOM      1  N   ALA B   2      -9.648... (truncated for documentation)"
    }
  ]
}

Performance

  • TCRBuilder2+ improves backbone accuracy over the original TCRBuilder2, particularly on the most challenging CDR-α3 and CDR-β3 loops, with mean RMSD reduced from 2.89 Å to 1.85 Å for CDR-α3 (~36% improvement) and from 3.12 Å to 1.93 Å for CDR-β3 (~38% improvement) on the ImmuneBuilder TCR benchmark set.

  • Compared to AlphaFold-Multimer, TCRBuilder2+ achieves essentially identical loop-level accuracy for TCRs (CDR-α3 RMSD 1.85 Å vs. 1.84 Å; CDR-β3 1.93 Å vs. 1.94 Å) while avoiding MSAs and large sequence databases, making it substantially more suitable for high-throughput TCR repertoire modelling.

  • Within BioLM’s structure prediction APIs, TCRBuilder2+ provides TCR-specific accuracy that is on par with AlphaFold-Multimer for TCRs but with computational cost and latency similar to other ImmuneBuilder models (ABodyBuilder2, NanoBodyBuilder2) and far lower than general-purpose predictors such as AlphaFold2/Multimer.

  • The model produces all-atom TCR structures in standard PDB format with stereochemical quality comparable to experimentally determined structures in the benchmark (no peptide bond, cis-bond, D-amino acid, or heavy-atom clash violations reported for ImmuneBuilder models in the original study), and with improved loop accuracy relative to earlier specialized methods such as RepertoireBuilder and the original TCRBuilder.

Applications

  • Structure-guided selection of therapeutic TCR candidates from large sequence panels, using predicted α/β variable-domain conformations to flag receptors with plausible, well-packed CDRs; useful for TCR-based immunotherapy programs, while still limited for highly flexible or unusually long CDR3 loops.

  • Modelling TCR–peptide–MHC binding geometry by combining TCRBuilder2+ TCR variable-domain structures with downstream docking or physics-based tools, helping guide rational engineering of specificity and affinity; suitable for canonical α/β TCRs but less reliable for non-standard domain architectures or engineered fusion formats.

  • High-throughput structural triage of NGS-derived TCR repertoires, enabling rapid removal of sequences predicted to yield grossly misfolded or unstable variable domains before synthesis and expression; valuable in target discovery and biomarker efforts, with the caveat that in silico stability proxies do not replace biophysical assays.

  • In silico filtering and ranking of designed or affinity-matured TCR libraries based on predicted backbone geometry and CDR packing, reducing downstream screening burden by deprioritizing models with distorted frameworks or extreme loop conformations; not intended to capture full induced-fit effects upon peptide–MHC engagement.

  • Generation of multiple plausible TCR structures per sequence to estimate per-residue uncertainty, allowing teams to focus follow-up modelling and experiments on regions with consistent conformations across the ensemble; less informative for large-scale conformational rearrangements or TCR clustering phenomena beyond the variable domains.

Limitations

  • Maximum Sequence Length: Each A (alpha) and B (beta) chain must be between 1 and 2048 amino acids. Longer sequences must be truncated or split before submission.

  • Batch Size: Up to 8 TCR pairs per items list in a single request. Larger repertoires must be processed in multiple requests.

  • Input Type Restrictions: This endpoint is specific to paired TCR chains using fields A and B. It cannot accept antibody heavy/light chains (H, L) or nanobody sequences; for those use abodybuilder2 or nanobodybuilder2 via their respective endpoints.

  • Model Scope: TCRBuilder2+ is trained on conventional TCRs. Performance may degrade for very atypical or engineered receptors (e.g. extreme CDR3 lengths/compositions, non‑Ig-like domains).

  • Conformational Diversity: The API returns a single refined pdb structure per TCR pair. It does not expose the underlying structure ensemble or per-residue error estimates, so it is not suitable for detailed flexibility analysis.

  • No Embeddings or Contacts: The predictor endpoint only returns coordinates in pdb format; it does not expose ImmuneBuilderEncodeIncludeOptions outputs such as mean, per_token, contacts, or attentions for downstream embedding or contact-based analyses.

How We Use It

TCRBuilder2+ enables rapid generation of TCR α/β structural models from sequence, giving protein engineers access to consistent CDR and framework geometries for large sequence panels. We use these structures to provide 3D context for TCR-based discovery, linking sequence-level design, structural clustering, and downstream developability and liability assessment via standardized, scalable APIs.

  • Supports high-throughput structural annotation of TCR repertoires for epitope hypothesis generation and hit triage.

  • Integrates with BioLM property prediction, embedding-based similarity search, and ranking workflows to prioritize TCRs with favorable structural and biophysical profiles.

References

  • Abanades, B., Wong, W. K., Boyles, F., Georges, G., Bujotzek, A., & Deane, C. M. (2023). ImmuneBuilder: Deep-learning models for predicting the structures of immune proteins. Communications Biology, 6, 575. https://doi.org/10.1038/s42003-023-04927-7