TCRBuilder2+ is a GPU-accelerated deep learning model specialized for rapidly predicting accurate 3D structures of T-cell receptor (TCR) variable domains from amino acid sequences. Optimized specifically for TCR modeling, it predicts backbone conformations with CDR loop RMSDs averaging below 2 Å. Outputs include PDB-format structures and per-residue error estimations. TCRBuilder2+ supports high-throughput workflows for therapeutic TCR discovery, immune repertoire analysis, and structure-guided antigen-binding studies.

Predict

Predict the structure of T-cell receptors using paired alpha (A) and beta (B) chain sequences.

python
from biolmai import BioLM
response = BioLM(
    entity="tcrbuilder2-plus",
    action="predict",
    params={},
    items=[
      {
        "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
        "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
      },
      {
        "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
        "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
      }
    ]
)
print(response)
bash
curl -X POST https://biolm.ai/api/v3/tcrbuilder2-plus/predict/ \
  -H "Authorization: Token YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
  "items": [
    {
      "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    },
    {
      "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    }
  ]
}'
python
import requests

url = "https://biolm.ai/api/v3/tcrbuilder2-plus/predict/"
headers = {
    "Authorization": "Token YOUR_API_KEY",
    "Content-Type": "application/json"
}
payload = {
      "items": [
        {
          "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
          "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
        },
        {
          "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
          "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
        }
      ]
    }

response = requests.post(url, headers=headers, json=payload)
print(response.json())
r
library(httr)

url <- "https://biolm.ai/api/v3/tcrbuilder2-plus/predict/"
headers <- c("Authorization" = "Token YOUR_API_KEY", "Content-Type" = "application/json")
body <- list(
  items = list(
    list(
      A = "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      B = "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    ),
    list(
      A = "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      B = "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    )
  )
)

res <- POST(url, add_headers(.headers = headers), body = body, encode = "json")
print(content(res))
POST /api/v3/tcrbuilder2-plus/predict/

Predict endpoint for TCRBuilder2+.

Request Headers:

Request

  • params (object, optional) — Configuration parameters:

    • include (array of strings, default: [“mean”]) — Output types to include:

      • Allowed values: “mean”, “per_token”, “bos”, “contacts”, “logits”, “attentions”

  • items (array of objects, min: 1, max: 8) — Input sequences:

    • H (string, optional, min length: 1, max length: 2048) — Heavy chain amino acid sequence (required for ABodyBuilder2 and NanoBodyBuilder2)

    • L (string, optional, min length: 1, max length: 2048) — Light chain amino acid sequence (required for ABodyBuilder2)

    • A (string, optional, min length: 1, max length: 2048) — Alpha chain amino acid sequence (required for TCRBuilder2)

    • B (string, optional, min length: 1, max length: 2048) — Beta chain amino acid sequence (required for TCRBuilder2)

  • ImmuneBuilderNanoBodyBuilder2PredictRequest (object) — NanoBodyBuilder2-specific request structure:

    • items (array of objects, min: 1, max: 8) — Input sequences:

      • H (string, required, min length: 1, max length: 2048) — Heavy chain amino acid sequence

  • ImmuneBuilderABodyBuilder2PredictRequest (object) — ABodyBuilder2-specific request structure:

    • items (array of objects, min: 1, max: 8) — Input sequences:

      • H (string, required, min length: 1, max length: 2048) — Heavy chain amino acid sequence

      • L (string, required, min length: 1, max length: 2048) — Light chain amino acid sequence

  • ImmuneBuilderTCRBuilder2PredictRequest (object) — TCRBuilder2-specific request structure:

    • items (array of objects, min: 1, max: 8) — Input sequences:

      • A (string, required, min length: 1, max length: 2048) — Alpha chain amino acid sequence

      • B (string, required, min length: 1, max length: 2048) — Beta chain amino acid sequence

Example request:

http
POST /api/v3/tcrbuilder2-plus/predict/ HTTP/1.1
Host: biolm.ai
Authorization: Token YOUR_API_KEY
Content-Type: application/json

      {
  "items": [
    {
      "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    },
    {
      "A": "AQSVTQLGSHVSVSEGALVLLRCNYSSSVPPYLFWYVQYPNQGLQLLLKYTSAATLVKGINGFEAEFKKSETSFHLTKPSAHMSDAAEYFCAVSEQDDKIIFGKGTRLHILP",
      "B": "ADVTQTPRNRITKTGKRIMLECSQTKGHDRMYWYRQDPGLGLRLIYYSFDVKDINKGEISDGYSVSRQAQAKFSLSLESAIPNQTALYFCATSDESYGYTFGSGTRLTVV"
    }
  ]
}
Status Codes:

Response

  • results (array of objects) — One result per input item, in the order requested:

    • pdb (string) — Predicted immune protein structure in standard PDB format; includes atomic coordinates for all atoms (heavy atoms and hydrogens), residue numbering according to IMGT scheme, and chain identifiers; structure is refined to remove steric clashes, incorrect peptide bond lengths, cis-peptide bonds, and D-amino acids; coordinates are in Angstroms (Å)

Example response:

http
HTTP/1.1 200 OK
Content-Type: application/json

      {
  "error": true,
  "status_code": 503,
  "message": "{\"error\":\"Uncaught exception\"}"
}

Performance

  • TCRBuilder2+ delivers significantly improved accuracy over the original TCRBuilder2 model, particularly in predicting the challenging CDR loops of T-cell receptor (TCR) structures:

    • CDR-α3 loop RMSD: 1.85 Å (TCRBuilder2+) vs. 2.89 Å (original TCRBuilder), a 36% improvement.

    • CDR-β3 loop RMSD: 1.93 Å (TCRBuilder2+) vs. 3.12 Å (original TCRBuilder), a 38% improvement.

  • Compared to AlphaFold-Multimer, TCRBuilder2+ achieves comparable accuracy in TCR structural predictions, with nearly identical RMSD values for critical loops (CDR-α3: 1.85 Å vs. 1.84 Å; CDR-β3: 1.93 Å vs. 1.94 Å), while being substantially faster and more computationally efficient.

  • TCRBuilder2+ is optimized specifically for TCR prediction, leveraging immune receptor-specific training datasets and structural constraints, resulting in significantly faster inference speeds compared to general-purpose structure predictors such as AlphaFold2 and ESMFold.

  • Unlike general-purpose models (e.g., AlphaFold2), TCRBuilder2+ does not require extensive multiple sequence alignments or large sequence databases, enabling rapid predictions suitable for high-throughput analysis of large TCR sequence datasets.

  • TCRBuilder2+ models are deployed using GPU-accelerated inference on NVIDIA Tesla P100 GPUs, allowing typical structure predictions to complete in approximately 5 seconds per individual TCR prediction, compared to approximately 30 minutes per prediction for AlphaFold-Multimer on similar hardware.

  • TCRBuilder2+ generates physically plausible structures with minimal stereochemical errors, comparable to experimentally determined crystal structures, and superior to other specialized methods (e.g., RepertoireBuilder, original TCRBuilder).

  • The model outputs structural predictions in standard Protein Data Bank (PDB) format, facilitating immediate downstream structural analysis and visualization.

Applications

  • Predicting T-cell receptor (TCR) structural conformations to accelerate therapeutic candidate selection, enabling rapid identification of TCRs with optimal antigen-binding properties; valuable for companies developing TCR-based immunotherapies, though less suitable for predicting highly flexible loop regions beyond typical CDR lengths.

  • Structural modeling of TCR-antigen interactions to guide rational design and affinity maturation, providing detailed insights into binding interfaces; beneficial for biotech companies optimizing TCR specificity and affinity, but limited in accuracy for non-canonical or highly unusual TCR sequences.

  • High-throughput structural screening of large-scale TCR sequence datasets from next-generation sequencing (NGS), enabling rapid identification of structurally viable receptor candidates; useful for biotech firms performing repertoire analysis and biomarker discovery, though predictions may require experimental validation for clinical applications.

  • Computational filtering and prioritization of TCR sequences based on structural stability and predicted conformational variability, helping reduce experimental workload and costs; particularly valuable for companies conducting TCR library generation and screening, although less effective for predicting dynamic structural changes upon antigen binding.

  • Generation of reliable TCR structural ensembles to estimate prediction uncertainty, allowing researchers to identify and exclude low-confidence models; advantageous for biotech teams integrating computational predictions into experimental pipelines, but not optimal for modeling large-scale conformational rearrangements or receptor clustering scenarios.

Limitations

  • Maximum Sequence Length: The API accepts sequences up to 2048 amino acids per chain. Longer sequences must be truncated or split into smaller segments.

  • Batch Size: Up to 8 sequence pairs per request. Larger datasets must be submitted in multiple batches.

  • TCRBuilder2+ is specialized for predicting T-cell receptor (TCR) structures. It should not be used for antibody or nanobody structure prediction; for these, use ABodyBuilder2 or NanoBodyBuilder2 respectively.

  • While TCRBuilder2+ provides accuracy comparable to AlphaFold-Multimer for TCR structures, it may be less accurate for highly unusual or novel TCR sequences, particularly in the highly variable CDR3 regions.

  • TCRBuilder2+ predicts a single representative structure per sequence pair. It does not provide alternative conformations or ensembles, limiting its utility for modeling structural flexibility or conformational diversity.

  • TCRBuilder2+ does not provide sequence embeddings or encodings. If downstream clustering, visualization, or embedding-based analyses are required, consider using embedding-focused models instead.

How We Use It

TCRBuilder2+ enables BioLM users to rapidly generate accurate structural models of T-cell receptors (TCRs) from sequence data, directly integrating into our protein engineering workflows to accelerate design cycles. By providing consistent predictions of TCR complementarity-determining regions (CDRs), the algorithm supports informed selection and optimization of therapeutic candidates, significantly reducing experimental trial and error. Within BioLM pipelines, TCRBuilder2+ integrates seamlessly with downstream property prediction tools, embedding generation, and candidate ranking algorithms, facilitating rapid prioritization of biologically viable and therapeutically promising TCR sequences.

  • Accelerates TCR-based therapeutic discovery by providing accurate structural context for sequence-based datasets.

  • Integrates effectively with BioLM predictive modeling and candidate ranking workflows, enhancing selection efficiency and experimental success rates.

References