ProteInfer API

ProteInfer uses convolutional neural networks for direct prediction of protein functions from amino acid sequences. It specializes in identifying Enzyme Commission numbers and Gene Ontology terms, enhancing protein functional annotation.




Set Your API Token

In order to use the BioLM API, you need to have a token. You can get one from the User API Tokens page.

Paste the API token you generated in the cell below, as the value of the variable BIOLMAI_TOKEN.

BIOLMAI_TOKEN = " "  # !!! YOUR API TOKEN HERE !!!

API Call with Python requests

We need to make sure we have the requisite package first, mainly Python requests.

try:
    # Install packages to make API requests in JLite
    import micropip
    await micropip.install('requests')
    await micropip.install('pyodide-http')
    # Patch requests for in-browser support
    import pyodide_http
    pyodide_http.patch_all()
except ModuleNotFoundError:
    pass  # Won't be using micropip outside of JLite

import requests
from IPython.display import JSON  # Helpful UI for JSON display

ProteInfer EC (Enzyme Commission) Prediction

SLUG = 'proteinfer-ec'
ACTION = 'predict'

url = f"https://biolm.ai/api/v3/{SLUG}/{ACTION}/"

headers = {
    "Content-Type": "application/json",
    "Authorization": f"Token {BIOLMAI_TOKEN.strip()}",
}

data = {
    "items": [
        {
            "sequence": "MMQTVLAKIVADKAIWVEARKQQQPLASFQNEVQPSTRHFYDALQGARTAFILECKKASPSKGVIRDDFDPARIAAIYKHYASAISVLTDEKYFQGSFNFLPIVSQIAPQPILCKDFIIDPYQIYLARYYQADACLLMLSVLDDDQYRQLAAVAHSLEMGVLTEVSNEEEQERAIALGAKVVGINNRDLRDLSIDLNRTRELAPKLGHNVTVISESGINTYAQVRELSHFANGFLIGSALMAHDDLHAAVRRVLLGENKVCGLTRGQDAKAAYDAGAIYGGLIFVATSPRCVNVEQAQEVMAAAPLQYVGVFRNHDIADVVDKAKVLSLAAVQLHGNEEQLYIDTLREALPAHVAIWKALSVGETLPAREFQHVDKYVLDNGQGGSGQRFDWSLLNGQSLGNVLLAGGLGADNCVEAAQTGCAGLDFNSAVESQPGIKDARLLASVFQTLRAY",

        },
    ]
}

# Make the request
response = requests.post(
    url=url,
    headers=headers,
    json=data,
)

result = response.json()
result
{'results': [{'sequence_id': '0',
   'predictions': [{'label': 'EC:4.-.-.-',
     'confidence': 1.0,
     'description': 'Lyases.'},
    {'label': 'EC:4.1.-.-',
     'confidence': 1.0,
     'description': 'Carbon-carbon lyases.'},
    {'label': 'EC:4.1.1.-',
     'confidence': 1.0,
     'description': 'Carboxy-lyases.'},
    {'label': 'EC:4.1.1.48',
     'confidence': 1.0,
     'description': 'Indole-3-glycerol-phosphate synthase.'},
    {'label': 'EC:5.-.-.-', 'confidence': 1.0, 'description': 'Isomerases.'},
    {'label': 'EC:5.3.-.-',
     'confidence': 1.0,
     'description': 'Intramolecular oxidoreductases.'},
    {'label': 'EC:5.3.1.-',
     'confidence': 1.0,
     'description': 'Interconverting aldoses and ketoses.'},
    {'label': 'EC:5.3.1.24',
     'confidence': 1.0,
     'description': 'Phosphoribosylanthranilate isomerase.'}]}]}
<span></span>

ProteInfer GO (Gene Ontology) Prediction

SLUG = 'proteinfer-go'
ACTION = 'predict'

url = f"https://biolm.ai/api/v3/{SLUG}/{ACTION}/"

headers = {
    "Content-Type": "application/json",
    "Authorization": f"Token {BIOLMAI_TOKEN.strip()}",
}

data = {
    "items": [
        {
            "sequence": "MSQCCCRQVLLGVEVSIVVMALVAGGAGQTHDSRAAGSSCYGGFDLYFVLDKSGSVQHYWNEIFYFVHHLAHKFISPQMRMSFIVFSTDGRTLMALTEDRDKIRAGLEELRMVQPGGDTYMDRGLHRASEQIYYAAGDGYRAASVIIALTDGELREDQFDTAQREAGRARQLGASVYCVGLKDFNETQLSTIADSKDHVFPVHDGFEALQSVIDSILKRSCIEILAVQPSSICEGGEDEEQRHPESFQVVVKGNGFLHARDVQKVLCSFRVNDTLTLMKRPLVVRDTYLLCPAPLLEREGTSATLHVSMNNGLSFISSSVTIEAVACSDGTFVAVALLILMLLLTLVLLWWFWPLCCTVVRPPSWISVRKTPVKPPPSFEVWSSFPLFCLQVVHEPPPPVAEDDSDDEEGLPKKKWPTVDASYYGGRGVGGIKRMEVRWGDKGSTEEGAKLEKAKNARVVMPTEEESLARPYHAAHKPVRSHKWYSPIKGKLDALCVFLRKGYDRVSIMRPLPGDKGKCINFTRSRSYPVTRYPVYRPPPTPIYTLPHGHQRRPSDDSNLFQLPPSPTSKLPPLPSLHPSSCATLPVYSRHPDLFSAPPSPTGSLPPPPQAPPLCRAPPPSRPPPRPN",

        },
    ]
}

# Make the request
response = requests.post(
    url=url,
    headers=headers,
    json=data,
)

result = response.json()
result
{'results': [{'sequence_id': '0',
   'predictions': [{'label': 'GO:0005488',
     'confidence': 1.0,
     'description': 'binding'},
    {'label': 'GO:0008150',
     'confidence': 1.0,
     'description': 'biological_process'},
    {'label': 'GO:0044464', 'confidence': 1.0, 'description': 'cell part'},
    {'label': 'GO:0005575',
     'confidence': 1.0,
     'description': 'cellular_component'},
    {'label': 'GO:0016021',
     'confidence': 1.0,
     'description': 'integral component of membrane'},
    {'label': 'GO:0031224',
     'confidence': 1.0,
     'description': 'intrinsic component of membrane'},
    {'label': 'GO:0044425', 'confidence': 1.0, 'description': 'membrane part'},
    {'label': 'GO:0003674',
     'confidence': 1.0,
     'description': 'molecular_function'},
    {'label': 'GO:0065007',
     'confidence': 0.9999992847442627,
     'description': 'biological regulation'},
    {'label': 'GO:0046872',
     'confidence': 0.9999992847442627,
     'description': 'metal ion binding'},
    {'label': 'GO:0043169',
     'confidence': 0.9999990463256836,
     'description': 'cation binding'},
    {'label': 'GO:0016020',
     'confidence': 0.9999864101409912,
     'description': 'membrane'},
    {'label': 'GO:0007165',
     'confidence': 0.9999784231185913,
     'description': 'signal transduction'},
    {'label': 'GO:0043167',
     'confidence': 0.9999719858169556,
     'description': 'ion binding'},
    {'label': 'GO:1901998',
     'confidence': 0.9998838901519775,
     'description': 'toxin transport'},
    {'label': 'GO:0060089',
     'confidence': 0.9997674822807312,
     'description': 'molecular transducer activity'},
    {'label': 'GO:0038023',
     'confidence': 0.9996358156204224,
     'description': 'signaling receptor activity'},
    {'label': 'GO:0004888',
     'confidence': 0.9989659786224365,
     'description': 'transmembrane signaling receptor activity'},
    {'label': 'GO:0050789',
     'confidence': 0.9988377690315247,
     'description': 'regulation of biological process'},
    {'label': 'GO:0004896',
     'confidence': 0.9984742999076843,
     'description': 'cytokine receptor activity'}]}]}

Next Steps

Check out additional tutorials at jupyter.biolm.ai, or head over to our BioLM Documentation to explore additional models and functionality.

See more use-cases and APIs on your BioLM Console Catalog.


BioLM hosts deep learning models and runs inference at scale. You do the science.

Contact us to learn more.

<span></span>

Accelerate yourLead generation

BioLM offers tailored AI solutions to meet your experimental needs. We deliver top-tier results with our model-agnostic approach, powered by our highly scalable and real-time GPU-backed APIs and years of experience in biological data modeling, all at a competitive price.

CTA

We speak the language of bio-AI

© 2022 - 2025 BioLM. All Rights Reserved.